Fractions, Decimals and Percentages

Through rich learning experiences, learners develop a deep, conceptual understanding of all the different ways we can represent the same number.

For example:

 $\frac{1}{2} = \frac{5}{10} = 0.5$ and $\frac{1}{2} = \frac{50}{100} = 0.50 = 50\%$

One half is the same size as 5 tenths (0 \cdot 5) and is <u>also</u> the same size as 50 hundredths (0 \cdot 50).

Decimal

fractions

tenths bundredths

0.1

0.2

0.5

0.01

0.02

0.10

0.50

0.25

0.20

Percentages

1%

5%

10%

50%

25%

20%

Fractions

1

100

5

100

1 10

 $\overline{10} = \overline{100}$

 $\frac{1}{2} = \frac{5}{10} = \frac{50}{100}$

 $\frac{1}{4} = \frac{25}{100}$

1 2

 $\overline{5} = \overline{10}$

One quarter is simply 'half of a half'

Percentages without a calculator!

All percentage calculations can be solved by using the building blocks:

- 50% is a half
- 25% is a half of a half
- 10% is equal to a tenth (divide by 10)

for example:

- 20% is simply double 10%
- 5% is half of 10%
- 40% is 4 x 10% or double 20% or 50% 10%
- 75% is 50% + 25% (half plus a quarter = three quarters) or 100% 25% .

Using a	variety of	strategies	helps	develop	mental	maths	agility
Using a	variety of	slialegies	neips	uevelop	mentai	maths	aginty.

Glasgow Counts

Parent Information Leaflet for Second Level Numeracy

Partitioning, re-grouping and re-ordering:

Partitioning is splitting numbers into parts, such as hundreds, tens and ones. We can split numbers many different ways to help make calculations easier. For example:

	1.	770 + 350	=	(700 + 50 + 20) + (300 + 50)				parti	partitioning			
			=	700 + 300 + 50 + 50 + 20				re-gr	re-grouping			
			=	1000 + 10	- 00	+ 20 = 11	20					
	2.	2 x 7 x 5	=	2 x 5 x 7	=	10 x 7 = 7	70		re-or	dering		
	3.	62 x 7 = (60 +	+ 2) x 7	Tł	is c	alculatio	on ca	n als	so be show	n as an a	rea model	
		= (60 -	+ 2) x 7						60	2		
		= (60	x 7) + (2 x 7)								
		= 420	+ 14				-		420			
		= 434	1				/		420	14		
	4. 635 ·	+ 449										
	+ 4	500 30 5 400 40 9						62 :	x 7 = 420 +	- 14 = 434	1	
		000 70 14 =	: 1084	6.	W	/hen divi	ding	, par	titioning ir	nto 70 + 8	3	
is not very useful.												
5. 032-214						We need to partition into multiples of 6						
	6	00 20 12					_		10 +	3 = 13		
	- 20	$\frac{10}{10}$ $\frac{4}{10}$	= 418			6	7	8	= 6 60 +	18		

 1342×6 $1000 \quad 300 \quad 40 \quad 2$ $6 \quad 6000 \quad 1800 \quad 240 \quad 12$ $1342 \times 6 = 6000 + 1800 + 240 + 12$ = 7800 + 200 + 40 + 12 = 8052

Using Open Number Lines:

Before progressing to formal calculations, counting with an open number line, helps us to better understand place value and improves our mental agility.

for example:

2. $105 \div 7$ becomes easier if we think if this as $7 \times ? = 105$

Rounding and Compensating:

We can often make maths simpler by rounding to the nearest 10 or 100 e.g. 1630—590 would be easier if we thought of it as 1630—600 + 10

