Fractions, Decimals and Percentages

Through rich learning experiences, learners develop a deep, conceptual understanding of all the different ways we can represent the same number.

For example:

$$
\frac{1}{2}=\frac{5}{10}=0 \cdot 5 \quad \text { and } \quad \frac{1}{2}=\frac{50}{100}=0 \cdot 50=50 \%
$$

One half is the same size as 5 tenths (0.5) and is also the same size as 50 hundredths ($0 \cdot 50$).
 for example:

- 20% is simply double 10%
- 5% is half of 10%
- 40% is $4 \times 10 \%$ or double 20% or $50 \%-10 \%$
- 75% is $50 \%+25 \%$ (half plus a quarter $=$ three quarters) or $100 \%-25 \%$.

Fractions	Decimal fractions		Percentages
	tents	nemerectats	

Using a variety of strategies helps develop mental maths agility.

Glasgow Counts

Parent Information Leaflet

for Second Level Numeracy

Glasgow city council

Partitioning, re-grouping and re-ordering:

Partitioning is splitting numbers into parts, such as hundreds, tens and ones. We can split numbers many different ways to help make calculations easier. For example:

1. $770+350$	$=$	$(700+50+20)+(300+50)$	partitioning
	$=$	$700+300+50+50+20$	re-grouping
	$=$	$1000+100+20=1120$	
2. $2 \times 7 \times 5$	$=2 \times 5 \times 7=10 \times 7=70$	re-ordering	

3. $62 \times 7=(60+2) \times 7 \quad$ This calculation can also be shown as an area model
$=(60+2) \times 7$
$=(60 \times 7)+(2 \times 7)$
$=420+14$
$=434$
4. $635+449$

5. $632-214$

$62 \times 7=420+14=434$
6. When dividing, partitioning into $70+8$ is not very useful.
We need to partition into multiples of 6

$$
6 \longdiv { 7 8 } = 6 \longdiv { 6 0 + 1 8 }
$$

Grid / Area Method: partitioning large numbers into smaller, more manageable chunks / areas and then adding the products together.

$1342 \times 6=6000+1800+240+12$

$$
=7800+200+40+12
$$

$=8052$
15

Using Open Number Lines:

Before progressing to formal calculations, counting with an open number line, helps us to better understand place value and improves our mental agility.
for example:

or there are many different ways....
$267+382=267+40+40+2 \quad$ partitioning and bridging to ease the calculation

2. $105 \div 7$ becomes easier if we think if this as $7 \times ?=105$

Rounding and Compensating:

We can often make maths simpler by rounding to the nearest 10 or 100
e.g. $1630-590$ would be easier if we thought of it as $1630-600+10$

Counting-on strategy:

Why count back when it might be easier to count on!

